Alpha Individual

1. If α and β are two roots of the equation $5x^2 - 2x - 1 = 0$, what is $\frac{1}{\alpha} + \frac{1}{\beta}$? A) $\frac{1}{2}$ B) $-\frac{1}{2}$ C) -2 D) 2 E) NOTA Solution: $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{2}{5}}{-\frac{1}{2}} = -2$

Answer: C)

- 2. If $\tan x + \tan y = 6$ and $\cot x + \cot y = 3$, what is $\tan(x + y)$? A) -6 B) -5 C) 5 D) 6 E) NOTA Solution: $\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{6}{1 - 2} = -6$ Answer: A)
- 3. Suppose that $f(4 x) = 2x^2 x 7$ and $f(x) = px^2 + qx + r$. What is p + q + r? A) -6 B) 8 C) 14 D) -4 E) NOTA Solution: $f(1) = p + q + r = f(4 - 3) = 2(3)^2 - 3 - 7 = 8$ Answer: B)
- 4. If a_n is a geometric sequence with $a_1 = 2$ and $a_5 = 18$, find the sum $a_1 + a_3 + a_5 + a_7$. A) 80 B) 72 C) 36 D) 27 E) NOTA

Solution: $a_5 = 2r^4 = 18$, so $r^2 = 3$. $a_1 + a_3 + a_5 + a_7 = a_1(1 + r^2 + r^4 + r^6) = 80$ Answer: A)

5. Simplify the product: $\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \cdots \tan 80^{\circ}$ A) $\frac{1}{2}$ B) 1
C) $\frac{1}{3}$ D) 3
E) NOTA Solution: $\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \cdots \tan 80^{\circ} = \frac{\sin 10^{\circ} \sin 20^{\circ}}{\cos 10^{\circ} \cos 20^{\circ}} \cdots \frac{\sin 80^{\circ}}{\cos 80^{\circ}} = \frac{\sin 10^{\circ} \sin 20^{\circ}}{\sin 80^{\circ} \sin 70^{\circ}} \cdots \frac{\sin 80^{\circ}}{\sin 10^{\circ}} = 1$ Answer: B)

6. Let
$$f(x) = \log_2(x + \sqrt{x^2 + 1})$$
. If $f(a) = b$, what is $f(-a)$?

A) a B) a + b C) b D) -b E) NOTA

Solution: $f(-a) = \log_2(-a + \sqrt{a^2 + 1})$

$$= \log_2 \frac{(a^2 + 1) - a^2}{a + \sqrt{a^2 + 1}} = \log_2 \left(\frac{1}{a + \sqrt{a^2 + 1}}\right) = \log_2 \left(a + \sqrt{a^2 + 1}\right)^{-1} = -b$$

Answer: D)

- 7. Find the value of $\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$. A) 2 B) $\frac{1+\sqrt{5}}{2}$ C) $\frac{1+\sqrt{5}}{4}$ D) $\sqrt{2}$ E) NOTA Solution: Let $A = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$. Then $A = \sqrt{1 + A}$, so A is the positive root of $A^2 - A - 1 = 0$. Answer: B)
- 8. Two numbers, x and y, are selected at random from the interval [0,2]. What is the probability that $y \le x + 1$? A) $\frac{7}{8}$ B) $\frac{3}{4}$ C) $\frac{2}{2}$ D) $\frac{1}{2}$ E) NOTA

Solution: The area of the triangle represented by $y \ge x + 1$ in the square by $0 \le x \le 2$ and

$$0 \le y \le 2$$
 is $\frac{1}{2}$
Answer: A)

9. How many real solutions are there to the equation |2x - 3| + |5 - 2x| = 2? A) 1 B) 2 C) 3 D) 4 E) NOTA

Solution: All real values from $\frac{3}{2} \le x \le \frac{5}{2}$ satisfy the equation. Answer: E)

10. If $\csc x - \cot x = 7$, what is $\csc x + \cot x$? A) 1 B) 3 C) $\frac{1}{3}$ D) $\frac{1}{7}$ E) NOTA

Solution: Since $\csc x - \cot x = \frac{1 - \cos x}{\sin x} = 7$, $\csc x + \cot x = \frac{1 + \cos x}{\sin x} = \frac{1 - \cos^2 x}{\sin x (1 - \cos x)} = \frac{\sin x}{1 - \cos x} = \frac{1}{7}$ Answer: D) 11. How many prime factors are there in 999,999? A) 3 B) 4 C) 5 D) 6 E) NOTA Solution: 999,999 = $3^3 \cdot 7 \cdot 11 \cdot 13 \cdot 37$ Answer: C)

12. If 2 + 3i and 1 + 4i are two roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ where *a*, *b*, *c*, *d* are integers, what is the value of a + b + c + d? A) 145 B) 159 C) 221 D) 230 E) NOTA

Solution: The other roots are 2 - 3i and 1 - 4i, so $f(x) = x^4 + ax^3 + bx^2 + cx + d = (x^2 - 4x + 13)(x^2 - 2x + 17)$. Then a + b + c + d = f(1) - 1 = 159.

Answer: B)

13. Consider a rational function $f(x) = \frac{ax+b}{cx+d}$ where c > 0. If f has its inverse function $f^{-1}(x) = \frac{x+4}{2x+1}$. What is a + b + c + d? A) 5 B) -5 C) 4 D) -4 E) NOTA

Solution: The inverse function of $f^{-1}(x)$ is f(x), so $f(x) = (f^{-1})^{-1}(x) = \frac{-x+4}{2x-1}$. Answer: C)

14. How many solutions to the equation $\sin^4 x + \cos^4 x = 1$ are there in the interval $[0,2\pi)$? A) 4 B) 5 C) 6 D) 7 E) NOTA

Solution: Let $t = \sin x$, then $t^4 + (1 - t^2)^2 = 1$, and hence t = 0, or $t = \pm 1$. There are four roots of the equation over the given interval; $x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ Answer: A)

15. Suppose that two positive numbers x and y satisfy $\log_y x + \log_x y = \frac{10}{3}$ and xy = 81. What is the value of x + y? A) 27 B) 30 C) 36 D) 49 E) NOTA

Solution: Note that $\log_y x + \log_x y = \log_y x + \frac{1}{\log_y x} = \frac{10}{3}$. By multiplying by $3\log_y x$, we obtain $3(\log_y x)^2 - 10(\log_y x) + 3 = (3\log_y x - 1)(\log_y x - 3) = 0$. Thus, $\log_y x = \frac{1}{3}$ or $\log_y x = 3$, which yields $x^3 = y$ or $x = y^3$. Then two pairs of solutions are x = 3, y = 27 or x = 27, y = 3. Thus in either case x + y = 30. Answer: B) 16. How many 4-digit numbers are there whose digit sum equals 10? A) 200 B) 219 C) 220 D) 286 E) NOTA

Solution: Let *abcd* represent a 4-digit number. Then a + b + c + d = 10 for $1 \le a \le 9$ and $0 \le b, c, d \le 9$. The equation is equivalent to a + b + c + d = 9 for $0 \le a \le 8$ and $0 \le b, c, d \le 9$. By Balls and Urns formula, there are $\binom{9+4-1}{4-1} - 1 = 219$ such 4-digit numbers.

Answer: B)

17. Suppose that f(x) is a monic polynomial of degree 3 such that f(1) = 1, f(2) = 4, f(3) = 9. Find the value of f(4). A) 16 B) 20 C) 22 D) 29 E) NOTA

Solution: Define a new function g(x) by $g(x) = f(x) - x^2$. Then $g(1) = f(1) - 1^1 = 0$, $g(2) = f(2) - 2^2 = 0$ and $g(3) = f(3) - 3^2 = 0$. Therefore g(x) is a monic cubic polynomial having three roots 1,2,3. By Factor Theorem, g(x) = (x - 1)(x - 2)(x - 3). So $f(x) = (x - 1)(x - 2)(x - 3) + x^2$. Thus, $f(4) = (4 - 1)(4 - 2)(4 - 3) + 4^2 = 22$.

Answer: C)

18. Which of the following is equal to
$$\sqrt[3]{9-4\sqrt{5}} + \sqrt[3]{9+4\sqrt{5}}$$
?
A) $2\sqrt[3]{3}$ B) $2\sqrt{5}$ C) 4 D) 3 E) NOTA

Solution: If we let $A = \sqrt[3]{9 - 4\sqrt{5}}$ and $B = \sqrt[3]{9 + 4\sqrt{5}}$, then $A^3 + B^3 = 18$ and AB = 1. Then $(A + B)^3 - 3AB(A + B) = 18$. The equation can be written as $X^3 - 3x - 18 = 0$, where $X = \sqrt[3]{9 - 4\sqrt{5}} + \sqrt[3]{9 + 4\sqrt{5}}$. Factoring the polynomial, $X^3 - 3x - 18 = (X - 3)(X^2 + 3X + 6) = 0$, we obtain the value of X = 3.

Answer: D)

- 19. Find the sum of the solutions to the equation $2^{\sin^2 x} + 5 \cdot 2^{\cos^2 x} = 7$ where x is in the interval $(0,2\pi)$.
 - A) $\frac{\pi}{2}$ B) π C) $\frac{3\pi}{2}$ D) 2π E) NOTA

Solution: If we let $X = 2^{\sin^2 x}$, then the equation becomes $X + 5 \cdot \frac{2}{x} = 7$. Solving the equation for *X*, we have X = 2 or X = 5. Since $0 \le \sin^2 x \le 1$, $X \le 2$. Thus, X = 2 and equivalently, $\sin^2 x = 1$. Solutions are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

Answer: D)

20. What is the remainder when 1! + 2! + 3! + ... + 2018! is divided by 7? A) 4 B) 5 C) 6 D) 0 E) NOTA

Solution: Note *n*! Is divisible by 7 for $n \ge 7$. So the remainder is equal to the remainder in the division $1! + 2! + \dots + 6! \equiv 1 + 2 + (-1) + 3 + 1 + (-1) \equiv 5 \pmod{7}$.

Answer: B)

- 21. If a_n is an increasing arithmetic sequence satisfying $a_5 + a_9 = 0$ and $|a_6| = |a_7| + 2$, what is a_1 ?
 - A) -12 B) -10 C) -8 D)-6 E) NOTA

Solution: Since a_n is an arithmetic sequence, $2a_7 = a_5 + a_9 = 0$, $a_7 = 0$. $|a_6| = |a_7| + 2 = 0 + 2 = 2$. Since $a_6 < a_7$, $a_6 = -2$. Hence $a_n = -12 + (n-1)(-2)$.

Answer: A)

22. If x is a positive real number such that $sin(arctan(\frac{x}{2})) = \frac{x}{3}$, what is the value of x? A) 1 B) 2 C) $\sqrt{5}$ D) $\sqrt{6}$ E) NOTA

Solution: If we let $\theta = \arctan\left(\frac{x}{2}\right)$, then $\tan \theta = \frac{x}{2}$ where θ is an angle in the first quadrant. Then $\sin \theta = \sin\left(\arctan\left(\frac{x}{2}\right)\right) = \frac{x}{\sqrt{x^2+4}}$. From the given condition we obtain $\frac{x}{3} = \frac{x}{\sqrt{x^2+4}}$. Solving it for x, we have $x = \sqrt{5}$.

Answer: C)

23. Let a_n be a sequence of integers. Suppose that a₁, a₂, a₃ form an arithmetic sequence and a₂, a₃, a₄ form a geometric sequence with an integer common ratio. If a₄ - a₁ = 30, what is a₁ + a₂ + a₃ + a₄?
A) 24 B) 33 C) 36 D) 46 E) NOTA

Solution: Let $a_2 = a$ and $a_3 = ar$ where r is a common ratio. Then we can write $a_1 = 2a - ar$ and $a_4 = ar^2$. Then $a_4 - a_1 = ar^2 - (2a - ar) = a(r^2 + r - 2) = a(r + 2)(r - 1) = 30$. Since both r + 2 and r - 1 are divisors of 30 and differ by 3, r - 1 = 2 and r + 2 = 5. So r = 3 and a = 3. Thus the four terms are -3,3,9,27. So their sum is -3 + 3 + 9 + 27 = 36.

Answer: C)

24. Assume that the system of equations $\begin{bmatrix} 2 & 6 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = k \begin{bmatrix} x \\ y \end{bmatrix}$ has a solution $\begin{bmatrix} x \\ y \end{bmatrix}$ with $x^2 + y^2 = 1$. What is the sum of all possible values of k? A) 1 B) 3 C) 5 D) 10 E) NOTA Solution: In order for the system to have nontrivial solutions, the matrix $\begin{bmatrix} 2-k & 6\\ 2 & 1-k \end{bmatrix}$ has to be nonsingular. In other words, det $\begin{pmatrix} 2-k & 6\\ 2 & 1-k \end{bmatrix} = \begin{vmatrix} 2-k & 6\\ 2 & 1-k \end{vmatrix} = (2-k)(1-k) - 12 = 0$. Solving the equation for k, we have k = 5, -2.

Answer: B)

25. Find the remainder when $3^{21} + 7^{21}$ is divided by 25. A) 0 B) 3 C) 8 D) 10 E) NOTA

Solution: If x = 5, then $3^{21} + 7^{21} = (x - 2)^{21} + (x + 2)^{21}$. By Binomial Theorem, $(x - 2)^{21} + (x + 2)^{21} = 2x^{21} + 2\binom{21}{19}x^{19} + \dots + 2\binom{21}{3}x^3 + 2\binom{21}{1}x$. From this we know that the remainder is equal to the remainder dividing $2\binom{21}{1}x = 2\binom{21}{1}5 = 210$ by 25, which is equal to 10.

Answer: D)

26. If $z = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$, what is the value of $(1 - z)(1 - z^2)(1 - z^3)(1 - z^4)$? A) 2 B) 3 C) 4 D) 5 E) NOTA

Solution: Note that z, z^2, z^3, z^4 are four roots of $x^4 + x^3 + x^2 + x + 1 = 0$. By Factor Theorem, $x^4 + x^3 + x^2 + x + 1 = (x - z)(x - z^2)(x - z^3)(x - z^4)$. Substituting x = 1, we obtain $(1 - z)(1 - z^2)(1 - z^3)(1 - z^4) = 5$.

Answer: D)

27. When √15 ⋅ 17 ⋅ 19 ⋅ 21 + 16 is simplified, it is a three-digit integer. What is the sum of the digits?
A) 9 B) 12 C) 15 D) 18 E) NOTA

Solution: If x = 18, then $\sqrt{15 \cdot 17 \cdot 19 \cdot 21 + 16}$ = $\sqrt{(x-3) \cdot (x-1) \cdot (x+1) \cdot (x+3) + 16} =$ = $\sqrt{(x^2-9)(x^2-1) + 16} = \sqrt{x^4 - 10x^2 + 25}$ = $x^2 - 5 = 18^2 - 5 = 319$

Answer: E)

28. What is the largest integer less than or equal to the sum $\sum_{n=1}^{2018} \log_2 \left(1 + \frac{1}{n}\right)$? A) 10 B) 11 C) 12 D) 13 E) NOTA Solution: $\log_2 \left(1 + \frac{1}{1}\right) + \log_2 \left(1 + \frac{1}{2}\right) + \log_2 \left(1 + \frac{1}{3}\right) + \dots + \log_2 \left(1 + \frac{1}{2018}\right) = \log_2 2 + \log_2 \frac{3}{2} + \log_2 \frac{4}{3} + \dots + \log_2 \frac{2019}{2018} = \log_2 2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \dots \frac{2019}{2018} = \log_2 2019 = 10. \dots$ Answer: A)

- 29. If *a*, *b*, *c* are positive real numbers such that $a^3 + b^3 + c^3 = 3abc$, what is the value of $\frac{(a+b)(b+c)(c+a)}{2}$?
 - A) 8 B) 4 C) 2 D) 1 E) NOTA

Solution: Note that $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$. So $a^3 + b^3 + c^3 = 3abc$ if and if $(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = 0$. Since *a*, *b*, *c* are positive real numbers, $a^2 + b^2 + c^2 - ab - bc - ca = 0$ which implies a = b = c. Therefore, $\frac{(a+b)(b+c)(c+a)}{abc} = \frac{2a\cdot 2b\cdot 2c}{abc} = 8$.

Answer: A)

- 30. If a nonzero 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies $A^2 = A$ and $A \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, which of following statements about *A* is NOT true?
 - A) ad bc = 0
 - B) a + d = 1
 - C) $A^{2018} = A$
 - D) $A^T = A$
 - E) NOTA

Solution: If $A^2 = A$, then A is singular, so det(A) = ad - bc = 0. The trace of A, tr(A) = a + d, is equal to 1. $A^n = A$ for each positive integer n. But A is not necessarily symmetric.

Answer: D)